Mean ergodic theorems for semigroups of linear operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Ergodic Theorems for C0 Semigroups of Continuous Linear Operators

In this paper we obtained mean ergodic theorems for semigroups of bounded linear or continuous affine linear operators on a Banach space under non-power bounded conditions. We then apply them to the wave equation and the system of elasticity to show that the mean of their solutions converges to their equilibriums.

متن کامل

Research Article Nonlinear Mean Ergodic Theorems for Semigroups inHilbert Spaces

Let K be a nonempty subset of a Hilbert space , where K is not necessarily closed and convex. A family Γ= {T(t); t ≥ 0} of mappings T(t) is called a semigroup on K if (S1) T(t) is a mapping from K into itself for t ≥ 0, (S2) T(0)x = x and T(t+ s)x = T(t)T(s)x for x ∈ K and t,s≥ 0, (S3) for each x ∈ K , T(·)x is strongly measurable and bounded on every bounded subinterval of [0,∞). Let Γ be a se...

متن کامل

Ergodic Theorems and Perturbations of Contraction Semigroups

We provide sufficient conditions for sums of two unbounded operators on a Banach space to be (pre-)generators of contraction semigroups. Necessary conditions and applications to positive semigroups on Banach lattices are also presented.

متن کامل

Semigroups of Linear Operators

Our goal is to define exponentials of linear operators. We will try to construct etA as a linear operator, where A : D(A)→ X is a general linear operator, not necessarily bounded. Notationally, it seems like we are looking for a solution to μ̇(t) = Aμ(t), μ(0) = μ0, and we would like to write μ(t) = eμ0. It turns out that this will hold once we make sense of the terms. How can we construct etA w...

متن کامل

Application of the Mean Ergodic Theorem to Certain Semigroups

We study the asymptotic behaviour of solutions of the Cauchy problem u′ = (∑n j=1(Aj + A −1 j ) − 2nI ) u, u(0) = x as t → ∞, for invertible isometries A1, . . . , An.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1984

ISSN: 0022-247X

DOI: 10.1016/0022-247x(84)90136-7